
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2000 Feb 17 2003 Feb 27

FEATURES

- Typical 2-tone performance at a supply voltage of 26 V and I_{DQ} of 500 mA
 - Output power = 30 W (PEP)
 - Gain = 12.5 dB
 - Efficiency = 32%
 - $d_{im} = -26 \text{ dBc}$
- · Easy power control
- Excellent ruggedness
- High power gain
- · Excellent thermal stability
- Designed for broadband operation (1800 to 2200 MHz)
- Internally matched for ease of use.

APPLICATIONS

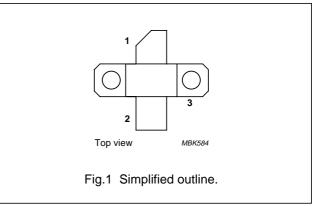
- RF power amplifiers for GSM, EDGE, CDMA and W-CDMA base stations and multicarrier applications in the 1800 to 2200 MHz frequency range
- Broadcast drivers.

DESCRIPTION

30 W LDMOS power transistor for base station applications at frequencies from 1800 to 2200 MHz.

QUICK REFERENCE DATA

RF performance at $T_h = 25$ °C in a common source test circuit.


MODE OF OPERATION	f	V _{DS}	P _L	G _p	ղը	d _{im}
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
2-tone, class-AB	f ₁ = 2000; f ₂ = 2000.1	26	30 (PEP)	>10	>30	≤–25

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

PINNING - SOT467C

PIN	DESCRIPTION
1	drain
2	gate
3	source, connected to flange

BLF2045

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage	_	65	V
V _{GS}	gate-source voltage	-	±15	V
I _D	drain current (DC)	-	4.5	А
T _{stg}	storage temperature	-65	+150	°C
Tj	junction temperature	_	200	°C

THERMAL CHARACTERISTICS

	ONDITIONS VALUE UNIT		PARAMETER	SYMBOL
$R_{th j-h}$ thermal resistance from junction to heatsink $P_{tot} = 87.5$ W; $T_h = 25$ °C; note 1 2.2	V; T _h = 25 °C; note 1 2.1 K/W	nk P _{tot} =	thermal resistance from junction to heatsink	R _{th j-h}

Note

1. Thermal resistance is determined under specified RF operating conditions.

BLF2045

CHARACTERISTICS

 $T_i = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	drain-source breakdown voltage	V _{GS} = 0; I _D = 0.7 mA	65	-	-	V
V _{GSth}	gate-source threshold voltage	V _{DS} = 10 V; I _D = 70 mA	1.5	-	3.5	V
I _{DSS}	drain-source leakage current	$V_{GS} = 0; V_{DS} = 26 V$	-	-	5	μA
I _{DSX}	drain cut-off current	$V_{GS} = V_{GSth} + 9 V; V_{DS} = 10 V$	9	-	-	A
I _{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0$	-	-	125	nA
g _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 2.5 \text{ A}$	-	2	-	S
R _{DSon}	drain-source on-state resistance	$V_{GS} = V_{GSth} + 9 V; I_D = 2.5 A$	-	340	-	mΩ
C _{iss}	input capacitance	V _{GS} = 0; V _{DS} = 26 V; f = 1 MHz	-	38	-	pF
C _{oss}	output capacitance	V _{GS} = 0; V _{DS} = 26 V; f = 1 MHz	-	31	-	pF
C _{rss}	feedback capacitance	$V_{GS} = 0; V_{DS} = 26 V; f = 1 MHz$	-	1.7	-	pF

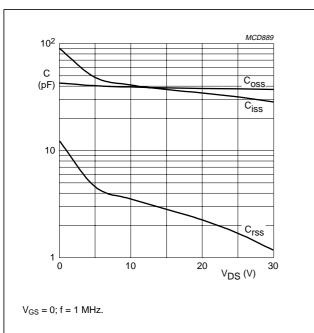
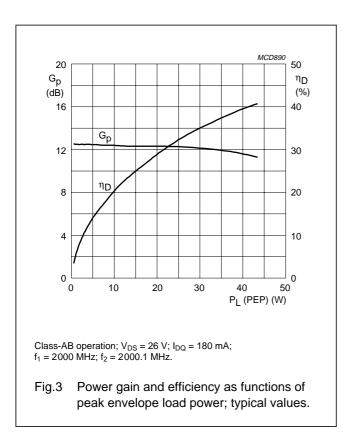
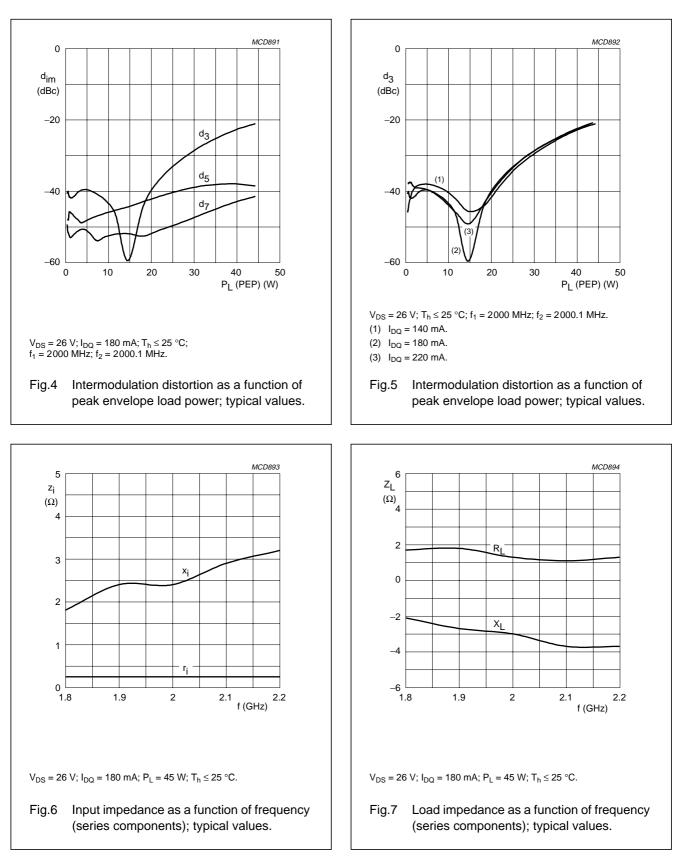
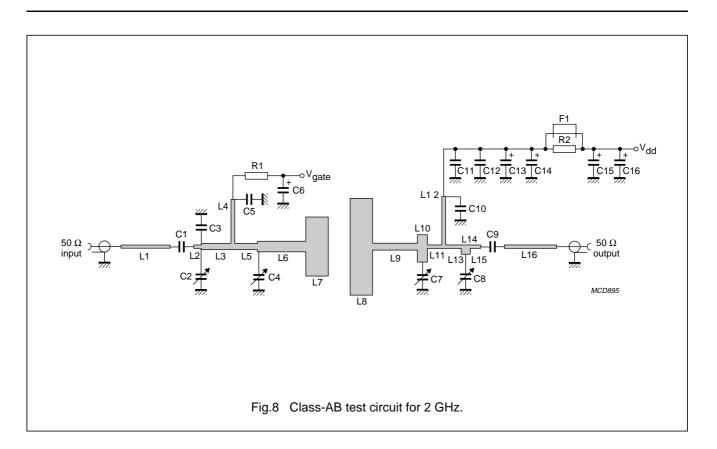


Fig.2 Input, output and feedback capacitance as functions of drain-source voltage, typical values.


APPLICATION INFORMATION


RF performance in a common source class-AB circuit. T_h = 25 °C; R_{th mb-h} = 0.65 K/W, unless otherwise specified.


MODE OF OPERATION	f	V _{DS}	I _{DQ}	P _L	G _p	ղը	d _{im}
	(MHz)	(V)	(mA)	(W)	(dB)	(%)	(dBc)
2-tone, class-AB	f ₁ = 2000; f ₂ = 2000.1	26	180	30 (PEP)	>10	>30	≤–25

Ruggedness in class-AB operation

The BLF2045 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 26$ V; $P_L = 30$ W (CW); f = 2000 MHz.

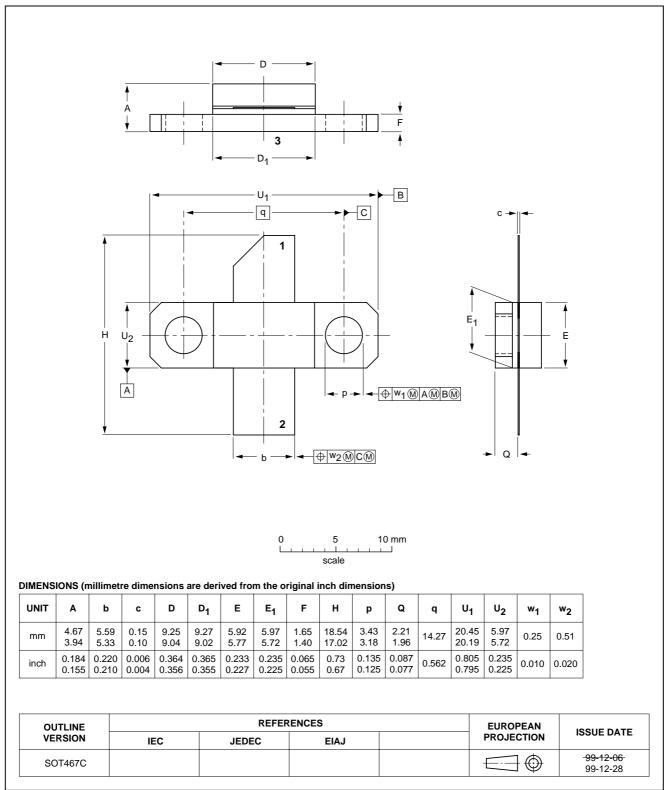
BLF2045

COMPONENT	DESCRIPTION	VALUE	DIMENSIONS	CATALOGUE NO.	
C2, C4, C7 and C8	Tekelec variable capacitor; type 37281	0.4 to 2.5 pF			
C3	multilayer ceramic chip capacitor; note 1	2.4 pF			
C1, C5, C9 and C10	multilayer ceramic chip capacitor; note 1	11 pF			
C11	multilayer ceramic chip capacitor; note 2	1 nF			
C12	multilayer ceramic chip capacitor	100 nF		2222 581 16641	
C6, C13, C14 and C15	tantalum SMD capacitor	4.5 μF; 50 V			
C16	electrolytic capacitor	100 μF; 63 V		2222 037 58101	
F1	Ferroxcube chip-bead 8DS3/3/8/9-4S2			4330 030 36301	
L1	stripline; note 3	50 Ω	$13 \times 0.9 \text{ mm}$		
L2	stripline; note 3	50 Ω	$2 \times 0.9 \text{ mm}$		
L3	stripline; note 3	34.3 Ω	15 × 1.7 mm		
L4 and L12	stripline; note 3	50 Ω	$37 \times 0.9 \text{ mm}$		
L5	stripline; note 3	34.3 Ω	6×1.7 mm		
L6	stripline; note 3	23.6 Ω	$13 \times 2.9 \text{ mm}$		
L7	stripline; note 3	5.6 Ω	6 × 15.8 mm		
L8	stripline; note 3	3.5 Ω	6 × 26 mm		
L9	stripline; note 3	31.9 Ω	$12 \times 1.9 \text{ mm}$		
L10	stripline; note 3	24.9 Ω	$7.4 \times 2.7 \text{ mm}$		
L11	stripline; note 3	50 Ω	$3 \times 0.9 \text{ mm}$		
L13	stripline; note 3	50 Ω	4.15 imes 0.9 mm		
L14	stripline; note 3	26.3 Ω	2.5 imes 2.5 mm		
L15	stripline; note 3	50 Ω	2.8 imes 0.9 mm		
L16	stripline; note 3	50 Ω	$14 \times 0.9 \text{ mm}$		
R1 and R2	metal film resistor	10 Ω, 0.6 W		2322 156 11009	

List of components (see Figs 8 and 9)

Notes

1. American Technical Ceramics type 100A or capacitor of same quality.


2. American Technical Ceramics type 100B or capacitor of same quality.

3. The striplines are on a double copper-clad printed-circuit board with Teflon dielectric ($\epsilon_r = 6.15$); thickness 0.64 mm.

PACKAGE OUTLINE

Flanged LDMOST ceramic package; 2 mounting holes; 2 leads

BLF2045

SOT467C

BLF2045

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
1	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613524/05/pp**12**

Date of release: 2003 Feb 27

Document order number: 9397 750 10918

SCA75

Let's make things better.

Philips Semiconductors